VÕRRE. VÕRDE PÕHIOMADUS. VÕRDEKUJULISE VÕRRANDI LAHENDAMINE
Võrdeks nimetatakse tõest võrdust, mille mõlemad pooled on jagatised.
Muutujad a, b, c ja d on võrde liikmed. Võrde esimene liiget a ja viimane liiget d nimetatakse võrde välisliikmeteks ning teine liige b ja kolmas liige c on võrde siseliikmed.
Võrret, mis sisaldab tundmatut, nimetatakse võrdekujuliseks võrrandiks.
Sulle võivad huvi pakkuda need õppematerjalid:
II kooliastme matemaatika reeglite kordamine
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Kirjalik liitmine
Harjutusülesandeid matemaatika riigieksamiks
Lahutamine 20 piires
Hariliku murru kordamine
Liitmine 10 piires
Ruutjuur, tehted ruutjuurtega
Funktsioonide graafikud
Tasandilised kujundid
Algebralised murrud
Kell ja kellaaeg
Üksliikmed, hulkliikmed ja tehted nendega
8. klassi matemaatika teooriavideod
Ruutvõrrand
Väike protsendiamps
Peastarvutamine eelkoolile
Numbrilised seosed
xy-koordinaatsüsteem
Liitmine 20 piires
Selliseid võrdekujulisi võrrandeid lahendatakse võrde põhiomaduse abil.
Võrde põhiomadus ütleb, et võrde välisliikmete korrutis on võrdne tema siseliikmete korrutisega.
Valem: Võrde puhul kasutame võrde põhiomadust ja saame
Võrde põhiomadust kasutades saame, et .
Edasi lahendame kasutades võrrandi omadusi.
Saime lahendiks arvu 9.
Kontroll: vasak pool , parem pool
. Saime, et vasak pool on võrdne parema poolega.
Vastus: lahend on 9.
Lisaks:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!