12. klassMatemaatika

Matemaatika tööraamat 12. klassile

1.2. Määratud integraali leidmine Newton-Leibnizi valemiga

Kui funktsioon \(\space y = f(x)\space\) on lõigus \(\space[a; b]\space\) integreeruv ja tal on algfunktsioon \(\space F(x)\), siis

\(\overunderset{b}{a}{\int}f(x)dx=\left. F(x)\right|^{b}_{a}\space\normalsize=F(b)-F(a)\)

Määratud integraali arvutamine

\(\overunderset{a}{a}{\int}f(x)dx=0\)


\(\overunderset{b}{a}{\int}f(x)dx=\overunderset{c}{a}{\int}f(x)dx+\overunderset{b}{c}{\int}f(x)dx\)


\(\overunderset{b}{a}{\int}\space[f(x)\pm g(x)]dx=\overunderset{b}{a}{\int}f(x)dx\pm\overunderset{b}{a}{\int}g(x)dx\)

\(\overunderset{b}{a}{\int}f(x)dx=-\overunderset{a}{b}{\int}f(x)dx\)


\(\overunderset{b}{a}{\int}c\cdot f(x)dx=c\overunderset{b}{a}{\int}f(x)dx\)

Arvutame määratud integraalid.


a) \(\overunderset{5}{1}{\int}(2x+5)dx=\color{Red} \left.(x^{2}+5x)\right|^{5}_{1}=5^{2}+5\cdot5-(1^{2}+5\cdot1)=25+25-6=44\)


b) \(\overunderset{2}{-2}{\int}(2x^{2}+5)dx=\color{Red} \left.(2\cdot\large\frac{x^{3}}{3}\normalsize+5x)\right|^{2}_{-2}=2\cdot\large\frac{2^{3}}{3}\normalsize+5\cdot2-(2\cdot\large\frac{(-2)^{3}}{3}\normalsize+5\cdot(-2))=30\large\frac{2}{3}\)


c) \(\overunderset{1}{-1}{\int}(2x^{3}+x)dx=\color{Red} \left.(2\cdot\large\frac{x^{4}}{4}\normalsize+\large\frac{x^{2}}{2}\normalsize)\right|^{1}_{-1}=(2\cdot\large\frac{1^{4}}{4}\normalsize+\large\frac{1^{2}}{2}\normalsize)-(2\cdot\large\frac{(-1)^{4}}{4}\normalsize+\large\frac{(-1)^{2}}{2}\normalsize)=0\)


d) \(\overunderset{\pi}{0}{\int}\sin x\space dx=\color{Red} \left.-\cos x\right|^{\pi}_{0}=-(\cos\pi-\cos0)=2\)


e) \(\overunderset{1}{0}{\int}e^{x}\space dx=\color{Red} \left.e^{x}\right|^{1}_{0}=e-1\)


f) \(\overunderset{e}{1}{\int}\large\frac{2}{x}\normalsize\space dx=\color{Red} \left.2\ln x\right|^{e}_{1}=2(\ln e-\ln1)=2\)

Arvutage määratud integraal.

\(\text{a) }\overunderset {2}{-3}{\int}(x^{2}-x-2)dx=\) \(\text{b) }\overunderset {2}{0}{\int} (6x^{2}-x)dx=\)
\(\text{c) }\overunderset{-2}{-5}{\int}(-x^{2}-3x-2)dx=\) \(\text{d) }\overunderset{2}{-2}{\int}(x^{2}-0,5x)dx=\)

Logi sisse

Vastus salvestatud!

Arvutage.

\(\text{a) }\overunderset{3}{1}{\int}(x+2)^{2}dx=\) \(\text{b) }\overunderset{0}{-1}{\int}(3x+2)^{2}dx\) \(\text{c) }\overunderset{3}{1}{\int}2(4x-3)^{2}dx\)
\(\text{d) }\overunderset{3}{-1}{\int}(5x+2)^{3}dx\) \(\text{e) }\overunderset{e}{1}{\int}(e+x)dx\) \(\text{f) }\overunderset{\pi}{-\large\frac{\pi}{2}}{\int}(\sin x-\cos x)dx\)
\(\text{g) }\overunderset{3}{2}{\int}5^{x}dx\) \(\text{h) }\overunderset{\large\frac{\pi}{4}}{0}{\int}\Large\frac{3}{\cos^{2}x}\normalsize\space dx\)

Logi sisse

Vastus salvestatud!

00:00