NATURAALARVUDE KORRUTAMINE. KORRUTAMISE VAHETUVUSSEADUS
Naturaalarvude korrutis n·a on võrdne n liidetava summaga, milles iga liidetav on a.
a+a+a+a….+a= n·a (n on arv, mis näitab, mitu liidetavat on kokku).
Korrutamine arvudega 1 ja 0
Arvuga 1 korrutades arv ei muutu. Kui korrutises on kas või üks teguritest null, siis võrdub kogu korrutis nulliga. Kui korrutis on võrdne nulliga, siis järelikult on vähemalt üks teguritest võrdne nulliga.
Sulle võivad huvi pakkuda need õppematerjalid:
Hariliku murru kordamine
xy-koordinaatsüsteem
Ruutvõrrand
Funktsioonide graafikute lõikepunktide leidmine
Ruutvõrrandi abil lahenduvad tekstülesanded
II kooliastme matemaatika reeglite kordamine
Peastarvutamine I kooliastmele
Tasandilised kujundid
Protsendid põhikooli matemaatikas
Protsendi rakendused igapäevaelus
Ruumilised kujundid
Kirjalik lahutamine
Liitmine 10 piires
Kell ja kellaaeg
Liitmine ja lahutamine 20 piires
Ruutjuur, tehted ruutjuurtega
Liitmine ja lahutamine 10 piires
Funktsioonid ja nende graafikud
Numbrilised seosed
Kirjalik liitmine
1·n=n·1= 1+1+1…+1 (n arv liidetavaid)=n
Näide: 1·5=5·1= 1+1+1+1+1=5
0·n=n·0= 0+0+0…+0 (n arv liidetavaid)=0
Näide: 0·3=3·0= 0+0+0=0
Näide: Asenda summa korrutisega ja arvuta. 5+5+5+5+5+2
Lahendus: 5+5+5+5+5+2= 5·5+2=25+2=27
Kirjaliku korrutamise puhul tuleb korrutatavad arvud kirjutada üksteise alla ning seejärel korrutada kõik ülemise arvu numbrid alumise arvu numbritega alustades väikseimatest ühikutest.
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!