HULKLIIKME TEGURDAMINE
Hulkliikme tegurdamine tähendab hulkliikme ehk summa esitamist korrutisena.
- Ühise liikme sulgude ette toomine
Ühiseks teguriks võetakse üks liige, millega jaguvad kõik avaldise liikmed ja mis sisaldab kõiki võimalikke ühiseid tegureid.
Valem: ab + ac = a(b + c)
Näide: 2ab + 4a2c = 2a (b + 2ac)
- Korrutamise abivalemid:
Näited:
k2 – s2 = (k – s)(k + s)
Sulle võivad huvi pakkuda need õppematerjalid:
Liitmine ja lahutamine 10 piires
II kooliastme matemaatika reeglite kordamine
Kirjalik liitmine
Liitmine ja lahutamine 20 piires
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Ratsionaalavaldised
Ruutvõrrand
Lahutamine 20 piires
Tasandilised kujundid
Üksliikmed, hulkliikmed ja tehted nendega
Ruutjuur, tehted ruutjuurtega
Algebralised murrud
Liitmine 10 piires
Ruumilised kujundid
Numbrilised seosed
Harjutusülesandeid matemaatika riigieksamiks
Hariliku murru kordamine
Geomeetria
xy-koordinaatsüsteem
Liitmine 20 piires
2us2 – 8uv2 = 2u(s2 – 4v2) = 2u(s – 4v)(s + 2v)
4 + 12c + 9c2 = (2 + 3c)2 = (2 + 3c)(2 + 3c)
2x3 + 8x2y + 8xy2 =2x(x2 + 4xy + 4y2) = 2x(x + 2y)2 = 2x(x + 2y)(x + 2y)
u2 – 2uv + v2 =(u – v)2 = (u –v)(u –v)
3x2y – 6xy +3y = 3y(x – 1)2 = 3y(x – 1)(x – 1)
Ruutkolmliikme tegurdamine
Ruutkolmliikme tegurdamist kasutan siis, kui kui on 3 liiget, aga korrutamise abivalemeid ei saa kasutada.
- Panen ruutkolmliikme võrduma nulliga.
- Lahendan ruutvõrrandi (leian x1 ja x2).
- Kirjutan ruutkolmliikme lahti tegurite korrutisena:
Taandatud ruutvõrrandi puhul:
x2 + px + q = (x – x1)(x – x2)
Taandamata ruutvõrrandi puhul:
ax2 + bx + c = a(x – x1)(x –x2)
Näide 1: x2 – 5x – 6
x2 – 5x – 6 = 0
x1 = –1ja x2 = 6
x2 – 5x – 6 = (x + 1)(x – 6)
Näide 2: 2x2 – 5x – 3
2x2 – 5x – 3 = 0
x1 = – 0,5 ja x2 = 3
2x2 – 5x – 3 = 2(x + 0,5)(x – 3) = (2x + 1)(x – 3)
Lisaks:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!