HULKLIIKME TEGURDAMINE
Hulkliikme tegurdamine tähendab hulkliikme ehk summa esitamist korrutisena.
- Ühise liikme sulgude ette toomine
Ühiseks teguriks võetakse üks liige, millega jaguvad kõik avaldise liikmed ja mis sisaldab kõiki võimalikke ühiseid tegureid.
Valem: ab + ac = a(b + c)
Näide: 2ab + 4a2c = 2a (b + 2ac)
- Korrutamise abivalemid:
Näited:
k2 – s2 = (k – s)(k + s)
Sulle võivad huvi pakkuda need õppematerjalid:
Protsendi rakendused igapäevaelus
Ruumilised kujundid
Üksliikmed, hulkliikmed ja tehted nendega
Peastarvutamine eelkoolile
Numbrilised seosed
Ruutvõrrandi abil lahenduvad tekstülesanded
NUPUTAME KOOS! Tasapinnalised kujundid
Tasandilised kujundid
Väike protsendiamps
Funktsioonid ja nende graafikud
Hariliku murru kordamine
II kooliastme matemaatika reeglite kordamine
Protsendid põhikooli matemaatikas
8. klassi matemaatika teooriavideod
Lahutamine 20 piires
Funktsioonide graafikute lõikepunktide leidmine
Ruutvõrrand
Funktsioonide graafikud
Allar Veelmaa videotund. Avaldised
Algebralised murrud
2us2 – 8uv2 = 2u(s2 – 4v2) = 2u(s – 4v)(s + 2v)
4 + 12c + 9c2 = (2 + 3c)2 = (2 + 3c)(2 + 3c)
2x3 + 8x2y + 8xy2 =2x(x2 + 4xy + 4y2) = 2x(x + 2y)2 = 2x(x + 2y)(x + 2y)
u2 – 2uv + v2 =(u – v)2 = (u –v)(u –v)
3x2y – 6xy +3y = 3y(x – 1)2 = 3y(x – 1)(x – 1)
Ruutkolmliikme tegurdamine
Ruutkolmliikme tegurdamist kasutan siis, kui kui on 3 liiget, aga korrutamise abivalemeid ei saa kasutada.
- Panen ruutkolmliikme võrduma nulliga.
- Lahendan ruutvõrrandi (leian x1 ja x2).
- Kirjutan ruutkolmliikme lahti tegurite korrutisena:
Taandatud ruutvõrrandi puhul:
x2 + px + q = (x – x1)(x – x2)
Taandamata ruutvõrrandi puhul:
ax2 + bx + c = a(x – x1)(x –x2)
Näide 1: x2 – 5x – 6
x2 – 5x – 6 = 0
x1 = –1ja x2 = 6
x2 – 5x – 6 = (x + 1)(x – 6)
Näide 2: 2x2 – 5x – 3
2x2 – 5x – 3 = 0
x1 = – 0,5 ja x2 = 3
2x2 – 5x – 3 = 2(x + 0,5)(x – 3) = (2x + 1)(x – 3)
Lisaks:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!